
J O U R N A L O F M A T E R I A L S S C I E N C E 3 6 (2 0 0 1 ) 5155 – 5159

The effect of stress triaxiality on tensile behavior

of cavitating specimens

P. D. NICOLAOU
Silver and Baryte Ores Mining Co., S.A., 21A Amerikis Str., 106 72, Athens, Greece
E-mail: P.Nicolaou@S.andB.gr

S.L. SEMIATIN
Air Force Research Laboratory, Materials and Manufacturing Directorate,
AFRL/MLLM, Wright-Patterson Air Force Base, OH 45433-7817, USA

A force-equilibrium approach was utilized to simulate the tensile behavior of sheet
specimens under cavitating conditions. Unlike previous work, the current model
incorporated the effect of stress state on the cavity growth rate parameter η. It was found
that stress triaxiality that develops after quasistable deformation has a relatively small
effect on η. Thus, at a given level of true strain, the increased value of η leads to higher
cavity volume fraction inside the specimen. Simulation results revealed that tensile
elongation is not affected by the higher cavity growth rate parameter when failure is
localization controlled; however, in cases in which failure is fracture (cavitation) controlled,
the overall elongation decreases. C© 2001 Kluwer Academic Publishers

1. Introduction
During uniaxial tension of a sheet specimen or round
bar, plastic instability is followed by flow localization
and the formation of a neck that eventually leads to
failure. Bridgman [1] was the first to show that tensile
hydrostatic stresses develop in the neck; such stresses
tend to stabilize the deformation and enhance tensile
ductility [2]. The magnitude of the hydrostatic stress is
a maximum at the center of the specimen and decays to
zero at its surface. The average hydrostatic stress across
the section is quantitatively described by the so-called
stress triaxiality factor FT [1, 2] which depends on the
neck geometry and the nature of the specimen (round
bar, sheet, etc.).

During tension testing at elevated temperatures, cav-
itation may occur and influence the tensile behavior as
well as the mode of failure. It has been shown that fail-
ure of a cavitating material may be controlled by flow
localization (in which a neck is formed) or by fracture
(essentially no neck is formed). The first mode prevails
at low values of the strain rate sensitivity m and/or low
cavity growth rates ηo, while the latter at large m and/or
large values of ηo [3, 4].

Although stress triaxiality has a beneficial effect
upon the tensile ductility when there is no cavitation,
the increased stress triaxiality and hence the (tensile)
hydrostatic stress may lead to an increased rate of cavity
growth in cavitating materials and thus may have an ad-
verse effect on tensile ductility. In a previous paper [4],
the quantitative effects of m and ηo on the tensile be-
havior of materials were assessed for the case in which
ηo was considered to be independent of the stress state.
The present work was undertaken to establish the ef-
fect of stress triaxiality on tensile ductility through its

influence on cavity growth. For this purpose, numerical
simulations of the sheet tension test incorporating the
effects of stress triaxiality on necking and cavitation
were conducted and compared to previous results.

2. Modeling procedures
A numerical model based on a load-equilibrium ap-
proach was developed to determine the effect of stress
triaxiality on tensile failure. The key features that dis-
tinguish the present work from that done previously [4]
were the incorporation of a description of cavity growth
as a function of stress state (and strain) into the previ-
ous formulation. The required modifications and calcu-
lation procedures are described in this section.

2.1. Model formulation
2.1.1. Cavity growth rate
Under most conditions of tensile deformation, cavity
growth is controlled by plasticity mechanisms, and the
evolution of the cavity volume fraction Cv with the true
plastic strain ε is found to obey the following relation
[5]:

Cv = Cvo exp(ηAPP ε), (1)

In this equation, Cvo is a parameter used to fit experi-
mental results and is referred to as the initial cavity vol-
ume fraction; ηAPP denotes the average cavity growth
rate parameter. The latter is also determined from ex-
perimental plots of lnCv vs. ε.

In the present work, the cavity growth rate parameter
was assumed to depend on the local stress state and, in
particular, on the ratio of the hydrostatic and effective
components of the local stress tensor. In this regard, the
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effect of stress state on the cavity growth rate has been
assessed by Rice and Tracey [6], Pilling and Ridley [7],
and Budianski et al. [8], among others.

For the purpose of this work, the Rice and Tracey
model [6] was employed in order to incorporate the in-
fluence of stress state on the cavity growth rate param-
eter. In particular, Rice and Tracey considered a spheri-
cal void (cavity) within a plastic, non-hardening, Mises
material. The strain field was determined from three
contributions: (i) a uniform strain field due to plastic
deformation of the matrix, (ii) a spherically symmetric
strain field resulting from the change of the void volume
but no shape change, and (iii) a strain field (decaying
at remote distances) which arises from changes of the
void shape but not its volume. The theoretical analy-
sis of Rice and Tracey revealed that the contribution
of the change of the cavity shape in the strain field is
minimal; on the other hand, the other two factors had
a much more potent effect. In fact, they showed that
by neglecting the cavity-shape-change strain field, the
error introduced was below 1 pct.

The Rice-and-Tracey analysis led to the determina-
tion of a measure of the cavity growth rate known as
the void growth factor D:

D = Ṙ

ε̇R
= d ln R

dε
. (2)

or

R = Ro exp(Dε) (3)

in which R, Ro, ε, and ε̇ denote the instantaneous and
initial void radii and the far-field strain and strain rate,
respectively. The dependence of D on stress was shown
to be as follows [6]:

D = 0.558 sinh(3σM/2σ̄) + 0.008 ν cosh(3σM/2σ̄), (4)

in which σM is the hydrostatic stress; σ̄ is the effec-
tive stress; and ν denotes a function of the strain rates
defined as ν = −3ε̇2/(ε̇1 − ε̇3), with ε̇1 ≥ ε̇2 ≥ ε̇3 rep-
resenting the principal strain rates. For example, for
uniaxial stress conditions, σM/σ̄ = 1/3, ν = +1.0, thus
and D = 0.30. For now on, the value of D for pure uni-
axial conditions will be indicated as DU. Equation 3
thus incorporates the effect of the local stress state
(via D) on the growth of an individual cavity.

The void growth factor D can be used to estimate
the effect of stress triaxiality on the cavity growth rate
parameter. Specifically, earlier experimental studies
concerned with cavity growth under pure tensile condi-
tions (i.e. σM/σ̄ = 1/3) established that the plasticity-
controlled growth of an individual cavity obeys the fol-
lowing relationship:

R = Ro exp

(
ηo

3
ε

)
(5)

in which ηo is the volumetric cavity growth rate param-
eter under uniaxial stress condition (ηo = d ln V /dε).∗

∗ Several analyses have led to relationships (for pure uniaxial tension
conditions) between the cavity growth rate ηo and the strain rate sen-
sitivity index of the material. For example, Stowell [9] suggested that
ηo = 1/m, while Cocks and Ashby [10] determined the more compli-
cated relationship: ηo = 1.5( m + 1

m ) sinh[ 2
3

(2 − m)
(2 + m) ].

Figure 1 Dependence of η/ηo on the ratio of the mean to hydrostatic
stress (σM/σ̄ ).

The cavity growth rate ηo is a parameter which also
depends on the intrinsic features of a material (e.g.
grain size, inclusion volume, size and spacing), as well
as the deformation conditions (strain rate and tem-
perature). Based on the analysis of Rice and Tracey,
a simple relation describing the effect of stress state
on the cavity growth rate can therefore be postulated.
The increase of the cavity growth rate parameter ηo
due to stress triaxiality is assumed to be proportional
to D/DU:

η = ηo
D

DU
or η = ηo F(σ ), (6)

in which η denoted the cavity growth rate parame-
ter under the complex stress state and F(σ ) = D/DU.
The dependence of F(σ ) on the ratio of the mean to
the effective stress σM/σ̄ is shown in Fig. 1. F(σ )
and hence the average cavity growth rate increases as
σM/σ̄ increases. For example, at the same strain level,
the cavity size and volume fraction would be higher
in the case of biaxial tension compared to uniaxial
tension.

In the present work, η as defined in Equation 6 was
assumed to also provide a reasonable approximation
for ηAPP in Equation 1.

2.1.2. Stress state at the neck
At any instant of deformation, the axial load P is given
by:

P = Aσ̄ /FT or σ aν
	 = σ̄ /FT, (7)

in which A and FT are the local values of the cross-
sectional area and the stress triaxiality factor respec-
tively, σ̄ is the effective stress, and σ aν

	 denotes the
average axial stress required to sustain further deforma-
tion. Assuming that the material is plastically isotropic
(i.e. the normal plastic anisotropy parameter r is equal
to unity), the stress triaxiality factor FT for a sheet
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specimen is of the following form [1]:

FT =
{(

1 + 2
R

a

)1/2

ln

[
1 + a

R

(
2a

R

)1/2

×
(

1 + 1

2

a

R

)1/2
]
−1

}−1

(8)

where a is half of the sheet width, and R the profile
radius of the neck. Although strictly applicable only
at the symmetry plane of the neck, Equation 8 has
been shown previously [11] to give a reasonable es-
timate of FT even away from the symmetry plane pro-
vided the local values of a and R are inserted into the
relation.

The magnitude of the average hydrostatic stress p
over the specimen cross-section, which develops after
necking starts, depends on the factor FT and the material
flow stress σ̄ . In particular, according to the Bridgman
analysis, it can be deduced that:

p = σ̄

(
1

FT
− 1

)
(9)

For a convex neck, FT < 1 and the hydrostatic stress is
tensile, while it is compressive for a concave neck in
which FT > 1.

The mean stress σM is then given by:

σM = σ̄

[
1

3
+

(
1

FT
− 1

)]
. (10)

The ratio of the mean to the effective stressσM/σ̄ , which
influences the temporal rate of a cavity growth, is then
simply:

σM

σ̄
=

[
1

3

(
1

FT
− 1

)]
. (11)

2.2. Simulation procedures
A detailed description of the simulation procedure can
be found in previous publications [2, 4, 12]. However,
a brief description of the input data, the numerical
method, and the modifications needed to account for
the effect of stress triaxiality on cavity growth is given
here.

A sheet specimen geometry was considered; its gage
length was assumed to be 12.5 mm and its nominal
width 3.175 mm. The specimen was divided into slices
(elements) which were 0.25 mm long. In all cases, a
2 pct. taper was assumed. This specimen geometry is
similar to the one which has been employed to inves-
tigate the high-temperature deformation and cavitation
of metallic materials [13, 14].

The material behavior was assumed to be rigid, vis-
coplastic, i.e.

σ̄ = K

(
˙̄ε
˙̄εo

)m

(12)

in which K is the strength parameter, ˙̄ε is the effective
strain rate, and ˙̄εo is a reference strain rate. The initial
cavity volume fraction Cvo was taken to be 10−4.

The simulation steps were as follows:

(i) An increment of deformation was imposed and
a/R and FT were calculated for each slice.

(ii) From the FT value, the mean and effective
stresses and the cavity growth rate η, were calculated
using Equations 4, 6, 10, and 11.

(iii) The true strain and strain rate distribution were
calculated for each element.

(iv) From the true strain and the cavity growth rate,
the increment in cavity volume fraction was deter-
mined from an equation of the form Cv(i) = Cv(i − 1)
exp(ηi�ε), in which Cv(i) is the cavity volume frac-
tion for step i , Cv(i − 1) the cavity volume fraction for
the previous step, ηi the cavity growth rate of step i ,
and �ε the true strain increment between steps i − 1
and i .

(v) From the true strain, the cavity volume fraction,
and the strain rate distribution, the new specimen di-
mensions, the load bearing area, the engineering stress
and strain were calculated.

(vi) Steps (i) to (v) were repeated until a sharp
neck was formed (localization-controlled failure) or the
cavity volume fraction at the central element reached
a value of 0.3 (fracture/cavitation-controlled failure).
Note that extensive cavity coalescence is taking place
at those levels of cavity volume fractions.

3. Results and discussion
The principal results of the present research were pre-
dictions of the effect of stress triaxiality on cavity
growth, stress-strain curves, tensile elongation, and re-
duction in area.

3.1. Cavity growth rate vs. elongation
The evolution of the cavity growth rate of the central
element η (as determined from Equation 6) normalized
by the nominal cavity growth rate ηo as a function of
engineering strain is shown in Fig. 2 for the case of a
low strain rate sensitivity value (m = 0.1). In addition,

Figure 2 Model predictions for the evolution of the ratio η/ηo (solid
curve) and the true strain in the central element in the tension specimen
(broken line) as a function of the engineering strain for a case involving
m = 0.1 and ηo = 1.
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Figure 3 Simulation results for engineering stress-strain curves and cav-
ity volume fraction vs. engineering strain for m = 0.1 and two different
values of the nominal cavity growth rate ηo.

the evolution of the true strain εc in the central element
of the tension specimen is also plotted in the graph.
During the quasi-stable deformation regime, the ratio
η/ηo remained essentially constant and slightly above
unity.† However, when necking started, the stress triax-
iality effect led to a sharp increase of the cavity growth
rate. As will be discussed in subsequent sections, this
increase in cavity growth rate had a noticeable effect
on failure behavior.

At higher values of the strain rate sensitivity, the ma-
terial flow was predicted to be much more uniform, and
thus η/ηo remained close to unity until very late stages
of the deformation process.

3.2. Stress-strain curves
Predicted engineering stress-strain curves for a strain
rate sensitivity index m = 0.1 and two nominal cav-
ity growth rates ηo (1 and 5) are presented in Fig. 3.
In addition, the cavity volume fraction at the central,
highest-strain, element of the specimen is also shown.
In both cases, failure was localization controlled. The
results indicate that the presence of cavities within the
specimen did not cause any changes in the stress-strain
curves. This finding is in agreement with previous nu-
merical [4] and theoretical [15] analyses.

3.3. Total elongation
As noted in the previous two sections, stress triaxial-
ity leads to a higher-than-nominal cavity growth rate.
Therefore, at a given strain (or elongation) the vol-
ume fraction of cavities would be higher. However,
it was also observed that when failure is localization
controlled, the engineering stress-strain behavior is af-
fected very little when cavitation occurs. Hence, it was
hypothesized that stress triaxiality would affect tensile
ductility only when failure is controlled by fracture.

The dependence of the total elongation on the nom-
inal cavity growth rate ηo and the strain rate sensitivity

† The fact that η/ηo is above unity is a result of the 2% taper assumed
along the specimen length.

Figure 4 Model predictions of total elongation as a function of the nom-
inal cavity growth rate ηo and the strain rate sensitivity index m for cases
in which the effect of stress triaxiality on cavity growth was or was not
taken into account.

index m is shown in Fig. 4. The solid lines correspond
to the case in which the stress triaxiality was taken
into account, while the broken lines correspond to the
case in which the cavity growth rate remained fixed
and equal to the nominal one throughout the tension
simulation. As expected, stress triaxiality was found
to have no influence on total elongation when failure
is localization controlled; i.e. for cases involving low
values of m or ηo. On the other hand, when failure is
fracture controlled, stress triaxiality was predicted to
lead to a decrease in the total elongation. Moreover, the
results shown in Fig. 4 indicate the transition in failure
mode. In particular, for a given value of m, the tran-
sition from localization-controlled failure to fracture-
controlled failure occurs at the point at which the total
elongation ceases to be independent of ηo. In addition,
the value of ηo at which the transition occurs decreases
with increasing m.

3.4. Reduction in area
Model predictions for the reduction in area (RA) as a
function of ηo and m are shown in Fig. 5. These results
resemble those for the total elongation. Specifically,
the reduction in area was predicted to be essentially
independent of m when failure is fracture controlled.
In addition, when the stress triaxiality effect is taken
into account in determining the cavity growth rate, the
RA is slightly lower in comparison to the results for
simulations without an effect of triaxiality on η. This
finding is a result of the fact that the critical cavity
volume fraction for fracture (Cv = 0.3) is reached at
lower deformations when the effect of stress triaxiality
on cavity growth is taken into account.

3.5. Round bar geometry
Simulations similar to those described above were con-
ducted for round bar specimens in order to establish the
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Figure 5 Model predictions of reduction in area as a function of the
nominal cavity growth rate ηo and the strain rate sensitivity index m for
cases in which the effect of stress triaxiality on cavity growth was or was
not taken into account.

stress triaxiality effect on tensile failure for this geom-
etry also. From a qualitative point of view, the simu-
lation results were quite similar to those obtained for
the sheet geometry. The only difference was that the
incorporation of the effect of stress state on the cav-
ity growth rate parameter had a slightly weaker effect
on the tensile ductility. This was attributed to the fact
that the factor FT is larger for the round bar geometry
compared to the sheet one for the same a/R ratio.

4. Summary
The effect of the triaxial stress state developed at the
neck and its vicinity on the tensile behavior of cavitat-
ing sheet specimens was investigated using a numeri-
cal model based on a load-equilibrium approach. It was
found that the stress triaxiality leads to increased cavity
growth rates especially after the quasi-stable deforma-
tion regime. The increased cavity growth rate does not
affect tensile behavior when failure is localization con-
trolled despite the fact that higher cavity volume frac-
tions are present at failure. On the other hand, when
failure is fracture (cavitation) controlled, it was found

that the predicted tensile elongation and the reduction
in area are lower when stress triaxiality is taken into
account, however its overall effect is not very large.
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